117 research outputs found

    Winter precipitation over the Iberian peninsula and its relationship to circulation indices

    No full text
    International audienceWinter precipitation variability over the Iberian peninsula was investigated by obtaining the spatial and temporal patterns. Empirical Orthogonal Functions were used to describe the variance distribution and to compress the precipitation data into a few modes. The corresponding spatial patterns divide the peninsula into climatic regions according to precipitation variations. The associated time series were related to large scale circulation indices and tropical sea surface temperature anomalies by using lag cross-correlation and cross-spectrum. The major findings are: the most influential indices for winter precipitation were the North Atlantic Oscillation and the East Atlantic/West Russian pattern; coherent oscillations were detected at about eight years between precipitation and the North Atlantic Oscillation and some dynamic consequences of the circulation on precipitation over the Iberian peninsula were examined during drought and wet spells. In the end statistical methods have been proposed to downscale seasonal precipitation prediction. Keywords: Winter precipitation, circulation indices, Iberian peninsula climate, climate variations, precipitation tren

    CANDELS Sheds Light on the Environmental Quenching of Low-mass Galaxies

    Get PDF
    We investigate the environmental quenching of galaxies, especially those with stellar masses (M*)<109.5M<10^{9.5} M_\odot, beyond the local universe. Essentially all local low-mass quenched galaxies (QGs) are believed to live close to massive central galaxies, which is a demonstration of environmental quenching. We use CANDELS data to test {\it whether or not} such a dwarf QG--massive central galaxy connection exists beyond the local universe. To this purpose, we only need a statistically representative, rather than a complete, sample of low-mass galaxies, which enables our study to z1.5z\gtrsim1.5. For each low-mass galaxy, we measure the projected distance (dprojd_{proj}) to its nearest massive neighbor (M*>1010.5M>10^{10.5} M_\odot) within a redshift range. At a given redshift and M*, the environmental quenching effect is considered to be observed if the dprojd_{proj} distribution of QGs (dprojQd_{proj}^Q) is significantly skewed toward lower values than that of star-forming galaxies (dprojSFd_{proj}^{SF}). For galaxies with 108M<M<1010M10^{8} M_\odot < M* < 10^{10} M_\odot, such a difference between dprojQd_{proj}^Q and dprojSFd_{proj}^{SF} is detected up to z1z\sim1. Also, about 10\% of the quenched galaxies in our sample are located between two and four virial radii (RVirR_{Vir}) of the massive halos. The median projected distance from low-mass QGs to their massive neighbors, dprojQ/RVird_{proj}^Q / R_{Vir}, decreases with satellite M* at M109.5MM* \lesssim 10^{9.5} M_\odot, but increases with satellite M* at M109.5MM* \gtrsim 10^{9.5} M_\odot. This trend suggests a smooth, if any, transition of the quenching timescale around M109.5MM* \sim 10^{9.5} M_\odot at 0.5<z<1.00.5<z<1.0.Comment: 8 pages, 5 figures. ApJL accepted. Typos correcte

    Gas Accretion and Star Formation Rates

    Full text link
    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star-formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star-formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star-formation are analyzed, specifically, the short gas consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the alpha-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe

    Astro2020: Empirically Constraining Galaxy Evolution

    Get PDF
    Over the past decade, empirical constraints on the galaxy-dark matter halo connection have significantly advanced our understanding of galaxy evolution. Past techniques have focused on connections between halo properties and galaxy stellar mass and/or star formation rates. Empirical techniques in the next decade will link halo assembly histories with galaxies' circumgalactic media, supermassive black holes, morphologies, kinematics, sizes, colors, metallicities, and transient rates. Uncovering these links will resolve many critical uncertainties in galaxy formation and will enable much higher-fidelity mock catalogs essential for interpreting observations. Achieving these results will require broader and deeper spectroscopic coverage of galaxies and their circumgalactic media; survey teams will also need to meet several criteria (cross-comparisons, public access, and covariance matrices) to facilitate combining data across different surveys. Acting on these recommendations will continue enabling dramatic progress in both empirical modeling and galaxy evolution for the next decade.Comment: Science white paper submitted to the Astro2020 Decadal Surve

    Definition of a temporal distribution index for high temporal resolution precipitation data over Peninsular Spain and the Balearic Islands: the fractal dimension; and its synoptic implications

    Get PDF
    Precipitation on the Spanish mainland and in the Balearic archipelago exhibits a high degree of spatial and temporal variability, regardless of the temporal resolution of the data considered. The fractal dimension indicates the property of self-similarity, and in the case of this study, wherein it is applied to the temporal behaviour of rainfall at a fine (10-min) resolution from a total of 48 observatories, it provides insights into its more or less convective nature. The methodology of Jenkinson & Collison which automatically classifies synoptic situations at the surface, as well as an adaptation of this methodology at 500 hPa, was applied in order to gain insights into the synoptic implications of extreme values of the fractal dimension. The highest fractal dimension values in the study area were observed in places with precipitation that has a more random behaviour over time with generally high totals. Four different regions in which the atmospheric mechanisms giving rise to precipitation at the surface differ from the corresponding above-ground mechanisms have been identified in the study area based on the fractal dimension. In the north of the Iberian Peninsula, high fractal dimension values are linked to a lower frequency of anticyclonic situations, whereas the opposite occurs in the central region. In the Mediterranean, higher fractal dimension values are associated with a higher frequency of the anticyclonic type and a lower frequency of the advective type from the east. In the south, lower fractal dimension values indicate higher frequency with respect to the anticyclonic type from the east and lower frequency with respect to the cyclonic type

    Angular Momentum of Early- and Late-type Galaxies: Nature or Nurture?

    Get PDF
    We investigate the origin, the shape, the scatter, and the cosmic evolution in the observed relationship between specific angular momentum jj_\star and the stellar mass MM_\star in early-type (ETGs) and late-type galaxies (LTGs). Specifically, we exploit the observed star-formation efficiency and chemical abundance to infer the fraction f_\rm inf of baryons that infall toward the central regions of galaxies where star formation can occur. We find f_\rm inf\approx 1 for LTGs and 0.4\approx 0.4 for ETGs with an uncertainty of about 0.250.25 dex, consistent with a biased collapse. By comparing with the locally observed jj_\star vs. MM_\star relations for LTGs and ETGs we estimate the fraction fjf_j of the initial specific angular momentum associated to the infalling gas that is retained in the stellar component: for LTGs we find fj1.11+0.750.44f_j\approx 1.11^+0.75_-0.44, in line with the classic disc formation picture; for ETGs we infer fj0.64+0.200.16f_j\approx 0.64^+0.20_-0.16, that can be traced back to a z<1z<1 evolution via dry mergers. We also show that the observed scatter in the jj_\star vs. MM_\star relation for both galaxy types is mainly contributed by the intrinsic dispersion in the spin parameters of the host dark matter halo. The biased collapse plus mergers scenario implies that the specific angular momentum in the stellar components of ETG progenitors at z2z\sim 2 is already close to the local values, in pleasing agreement with observations. All in all, we argue such a behavior to be imprinted by nature and not nurtured substantially by the environment

    Galaxy And Mass Assembly (GAMA): Gas Fuelling of Spiral Galaxies in the Local Universe II. – Direct Measurement of the Dependencies on Redshift and Host Halo Mass of Stellar Mass Growth in Central Disk Galaxies

    Get PDF
    We present a detailed analysis of the specific star formation rate – stellar mass (sSFR − M*) of z ≤ 0.13 disk central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR − M* relations of disk-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR − M* relation of non-grouped (field) central disk galaxies with redshift, even over a Δz ≈ 0.04 (≈5 · 108yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the ”main-sequence-of-star-forming-galaxies” from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star-formation in disks, with the inflow being determined by the product of the cosmological accretion rate and a fuelling-efficiency – M ˙ b,halo ζ M˙b,haloζ . In particular, maintaining the paradigm requires M ˙ b,halo ζ M˙b,haloζ to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling-efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3M⊙ over z = 0 − 0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disk-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for disks are unclea

    The importance of innovative projects and network for the advances of innovation in Science Teaching: the case of on IRES network teacher

    Get PDF
    Este articulo presenta la descripción y análisis del Modelo de Investigación en la Escuela que fundamenta el Proyecto IRES (Investigación y Renovación Escolar) y el análisis en profundidad de una entrevista a un maestro en el área de ciencias que pertenece a la red de este proyecto: Red IRES. Los resultados ponen en evidencia la importancia que ha tenido para este profesor la pertenencia al proyecto y al colectivo de docentes que lo impulsan, así como la pertinencia del modelo para sustentar los cambios introducidos en el aula. Destaca también la relevancia, para su evolución profesional, del diálogo entre docentes de todos los niveles del sistema educativo, incluida la universidad. Proponemos que estas experiencias sean más reconocidas y valoradas en el ámbito de la Enseñanza de las Ciencias y en las instancias gubernamentales.This article presents the description and analysis of the Research Model in the School that bases the IRES Project (Research and School Renovation) and the in-depth analysis of an interview with a science teacher belonging to the network of this project: IRES Network. The results show how important it is for this teacher to belong to the project and to the group of teachers that promote it, as well as the relevance of the model to support the changes introduced in the classroom. It also highlights the relevance, for its professional evolution, of the dialogue between teachers at all levels of the education system, including the university. We propose that these experiences be more recognized and valued in the field of Science Teaching and in governmental instances
    corecore